ORIGINAL ARTICLE

Sensitivity Pattern of Staphylococcus Aureus Isolates to Commonly Used Antibiotics

RONAQ ZAMAN¹, MUHAMMAD INAM², ZOBIA AFSHEEN³

ABSTRACT

Aim: To investigate the sensitivity pattern of Staphylococcus aureus isolates obtained from clinical specimens including urine, and wound to commonly used antibiotics.

Methods: This prospective study was conducted from June 2010 to July 2011. Clinical specimens including urine, wound swab were collected from the patients of Orthopedic Department of Hayatabad Medical Complex Peshawar with informed consent and was analyzed in Pathology Department of Kabir Medical College Peshawar. The samples were cultured aerobically in blood agar and cystine lactose electrolyte deficient (CLED) agar. The isolates were identified using motility test, colony morphology, Gram staining and Biochemical tests. The discs of Amoxycillin, Co-Amoxiclav, Cephradine, Cefuroxime, Sparfloxacin, Meronem, Tinem and Linzolid were used.

Results: There were total 150 cases which contain 75 each of high urine sample and wound swab. There were 85 male patients and 65 female patients. In wound swab specimens, sensitivity pattern was; Tinem (98.7%), Linzolid (97.3%), Meronem (94.7%), Co-Amoxiclav (93.3%), Cephradine(90.7%), Cefuroxime(86.7%), Amoxycillin (82.7%) and Sparfloxacin (80%). In urine specimen the S. aureus was sensitive to Tinem(94.7%), Meronem(93.3%), Sparfloxacin(93.3%), Linzolid (90.7%), Cefuroxime (86.7%), Co-Amoxiclav (80%), Amoxycillin (69.4%), Cephradine Conclusion: Staphylococcus aureus in wound and urine culture almost always sensitive to Tinem antibiotic. Sensitivity to Cephradine in wound culture is double that of urine culture.

Keywords: S. Aureus, Sensitivity, Gram positive, Antibiotics

INTRODUCTION

The Staphylococci are gram-positive bacteria that often occur as a part of the harmless bacterial community inhabiting the skin and nasal cavities of humans and animals. Of 31 species of staphylococci currently recognized, 15 are potentially pathogenic to humans and these are often implicated in healthcare and community-acquired illnesses, ranging from mild skin infections to life threatening diseases and death. Since staphylococci are capable of acquiring a remarkable range of resistance to antibiotics, staphylococcal infections can be recalcitrant to antibiotic chemotherapy. Antibiotic-resistant staphylococci have become a world-wide problem that not only impacts public health, but also affects the health care system itself by causing prolonged hospitalization and increases in costs of treatments and patient mortality². Historically, Staphylococcus aureus has been regarded as the most important staphylococcal species in terms of public health.3 For example, S. aureus and antibiotic-resistant S. aureus strains such as methicillin-resistant S. aureus

Correspondence to Dr Muhammad Inam Email: dr_mohammadinam@yahoo.co.uk

(MRSA) are regarded as important causative agents of healthcare- and community-associated infection⁴, resulting in skin and soft-tissue infections in addition to more serious respiratory (pneumonia), circulatory (bacteremia), central nervous system (meningitis), and other diseases.⁵ However, many other Staphylococcus species that were previously disregarded as insignificant clinical contaminants have gained increased attention as important human pathogens. For example, S. epidermidis, the most frequently isolated Staphylococcus species from human samples¹, can cause a wide range of health problems, including infections of the bloodstream (bacteremia), throat, nose, ear, eye, cardiovascular system (e.g. prosthetic-valve endocarditis and intravascular catheter infections), surgical wounds, central nervous system, and infections associated dialysis^{6,7}. with Other important non-aureus staphylococci include S. saprophyticus, the second most- frequently-isolated species in acute urinarytract infections and S. haemolyticus, S. hominis and S. lugdunensis, which often contaminate blood samples and are associated with a variety of human diseases⁵. infections The coagulase-negative staphylococci (CNS) are a subgroup of the staphylococci that include many clinically-important species that are sometimes collectively considered equally or more clinically-important than S. aureus.¹

¹Department of Pathology, Kabir Medical College Peshawar, ²Department of Orthopaedics & Spine Surgery, Hayatabad Medical Complex Peshawar, ³Abasyn University Peshawar

This is especially important as staphylococcal species have been reported to occur in the hospital environment, contaminating surfaces and spreading infections to patients. For example, staphylococci have been isolated from hospital surfaces, including indwelling medical devices, computers, bed rails, countertops, floors, door handles, faucets, bed linens, tables, blood pressure cuffs/tourniquets, and gowns and gloves of healthcare personnel. The objective of this study was to investigate the sensitivity pattern of Staphylococcus aureus isolates obtained from clinical specimens including urine, and wound to commonly used antibiotics.

PATIENTS AND METHODS

This prospective study was conducted from June 2010 to July 2011. Clinical specimens including urine, wound swab were collected from the patients of Orthopedic Department of Hayatabad Medical Complex Peshawar with informed consent and was analyzed in Pathology Department of Kabir Medical College Peshawar. Wound swabs and urine samples were collected from patients of orthopedic Hayatabad department of Medical Complex Peshawar. Wound swabs were collected from extremities wound using sterile swab sticks while mid stream urine samples were collected from patients using sterile precautions. The samples were cultured aerobically in blood agar and cystine lactose electrolyte deficient (CLED) agar. The plates were incubated at 37° C overnight. Streak plate technique was used to obtain pure culture of each isolate prior to identification. The isolates were identified using motility test, colony morphology, Gram staining and Biochemical tests.

Sensitivity testing using disc diffusion technique: The discs of Amoxycillin, Co-amoxiclav, Cephradine, Cefuroxime, Ciprofloxacin, Meronem, Tinem and Linzolid were used in this study. Overnight cultures of each isolate were adjusted to Mc Farland turbidity standard (0.5). Overnight cultures of each isolate were adjusted as in the case of disc diffusion described by Piette et al⁹. Sterile swabs were used to inoculate the test organism on the sensitivity agar. Sterile forceps were used to carefully distribute the antibiotic discs evenly on the inoculated plates. After allowing for about 30 minutes on the bench for proper diffusion, the plates were inverted and incubated aerobically at 35°C for 18 hours. The inhibition zone diameters were measured in millimetres using meter rule. All the data were put in SPSS version 10, percentages and frequencies distribution was calculated.

RESULTS

Only those specimens were selected in which the growth of S. aureus was detected by Culture. This was further confirmed by using motility test, colony morphology, Gram staining and biochemical tests. There were total 150 cases which contain 75 each of high urine sample and wound swab. There were 85 male patients and 65 female patients (Fig. 1). All the specimens were separately evaluated for S. aureus sensitivity to different antibiotics. In wound swab specimens, S. aureus was almost always sensitive to Tinem (98.7%) antibiotic and less sensitive to Ciprofloxacin (80%). The sensitivity pattern of S. Aureus to other antibiotics are; Linzolid (97.3%), Meronem (94.7%), Co-Amoxiclav (93.3%),Cephradine(90.7%), Cefuroxime(86.7%) Amoxycillin [82.7%] (Table 1). In urine specimen the S. aureus was sensitive to Tinem (94.7%), Meronem (93.3%), Ciprofloxacin (93.3%), Linzolid (90.7%), Cefuroxime (86.7%), Co-Amoxiclav (80%). Amoxycillin (69.4%) and Cephradine (53.4%). The S. aureus is mostly sensitive to Tinem and least sensitive to Cephradine in urine specimen (Table 2). When we compare the sensitivity pattern of both specimens then wound culture is mostly sensitive to Tinem (98.7%) Linzolid (97.3%), Meronem (94.7%) and Co-Amoxiclav (93.3%) while the urine culture is mostly sensitive Tinem (94.7%), Meronem (93.3%), Ciprofloxacin (93.3%) and Linzolid [90.7%] (Table 3).

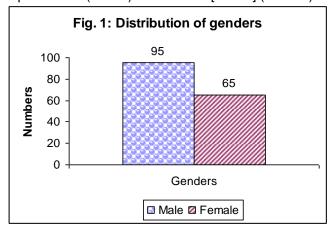


Table 1: Percentage of S. Aureus sensitivity against different antibiotics from wound swab

Antibiotics	Sensitivity pattern	%age of sensitivity
Amoxicillin	62	82.7
Coamoxiclav	70	93.3
Cephradine	68	90.7
Cefuroxime	65	86.7
Ciprofloxacin	60	80.0
Meronem	71	94.7
Tinem	74	98.7
Linzolid	73	97.3

Table 2: Percentage of S. Aureus sensitivity against different antibiotics from urine specimen

Antibiotics	Sensitivity pattern	%age of sensitivity
Amoxicillin	52	69.4
Co-amoxiclav	60	80.0
Cephradine	40	53.4
Cefuroxime	65	86.7
Ciprofloxacin	70	93.3
Meronem	70	93.3
Tinem	71	94.7
Linzolid	68	90.7

Table 3: Comparison of percentages of sensitivity of S. aureus sensitivity against different antibiotics from wound swab and Urine

Antibiotics	Percentage of sensitivity	
	Wound swab	Urine
Amoxicillin	82.7	69.4
Co-Amoxiclav	93.3	80.0
Cephradine	90.7	53.4
Cefuroxime	86.7	86.7
Ciprofloxacin	80	93.3
Meronem	94.7	93.3
Tinem	98.7	94.7
Linzolid	97.3	90.7

DISCUSSION

Most of infections are due to S. aureus.¹⁰ recognition and timely treatment can avoid dreadful complication of diseases. 11 In the current study in wound swab specimens, S. aureus was almost always sensitive to Tinem (98.7%) antibiotic and less sensitive to Ciprofloxacin (80%). The sensitivity pattern of S. aureus to other antibiotics are; Linzolid (97.3%), Meronem (94.7%), Co-amoxiclav (93.3%), Cephradine (90.7%), Cefuroxime (86.7%) and Amoxycillin (82.7%). Ikeagwu et al 2 noted the highest sensitivity for Ofloxacin (65%) while the least was for Co-trimoxazole (6%), Amoxicillin, Ampicillin, Tetracycline and Cloxacillin recorded 37%, 19%, 8% and 11% respectively in his study. This study is not comparable to the current study in which sensitivity of amoxicillin is 37% while in current study it is 82.7%. Hamdan et al¹³ studied the urine sample of pregnant ladies and found that Escherichia coli (42.4%) and S. aureus (39.3%) were the commonest isolated bacteria. S. aureus isolates, showed 2 to 20 percent resistance amoxicillin, naladixic to ciprofloxacin, nitrofurantoin. co-trimoxazole. amoxicillin/clavulanate and norfloxacin. In this study. in urine specimen the S. aureus was sensitive to Tinem (94.7%), Meronem (93.3%), Ciprofloxacin (93.3%), Linzolid (90.7%), Cefuroxime (86.7%), Co-Amoxiclav (80%),Amoxycillin (69.4%) Cephradine (53.4%). The study of Hamdan et al is comparable to this study.

Taj et al¹⁴ studied the sensitivity of S. aureus in different clinical isolates. He found the sensitivity of S. aureus to Cefixime (0%) Doxicycline (0%) Oxacillin (3.5%) Gentamicin, (3.7%), co-trimoxazole (4.4%) Chloramphenicol Tobramicin (7%) (18.07%)Ofloxacin (27.6%) and Ciprofloxacin (34.3%). High sensitivity was found to Ceftazidine (64%), Co-Amoxiclav (67.3%), Fosfomycin (69%), Cefroxime (76%), Amikacin (82.8%) and Meropenem (87%). All isolates were susceptible Linezolid. Taj et al study is comparable to this study. The sensitivity pattern of S. aureus in Onwubiko et al¹⁵ study to the following antibiotics was; Gentamicin, Amoxycillin/clavulanate, Streptomycin, Cloxacillin, Erythromycin, Cotrimoxazole, Chloramphenicol, Tetracycline, Penicillin, Ciprofloxacin, Ofloxacin, Levofloxacin, Ceftriaxone, Amoxycillin and vancomycin were 92.4%, 63.0%, 44.2%, 35.8%, 52.4%, 61.9%, 15.5%, 31.2%, 7.1%, 78.9%, 76.6%, 100%, 71.4%, 30.7% and 100% respectively. Methicillin resistant isolates were sensitive to Levofloxacin 93.7% and Ofloxacin 68.7%. Dada-Adegbol¹⁶ study showed resistance to commonly used antibiotics such as Ampicillin 97%, Tetracycline 93%, Cotrimoxazole and 98%, Amoxycillin 89% was observed among most uropathogens.

CONCLUSION

S. aureus was almost always sensitive to Tinem (98.7%) antibiotic and less sensitive to Ciprofloxacin (80%) in wound swab specimens while in urine specimen the S. aureus was most sensitive to Tinem (94.7%) and least sensitive to Cephradine (53.4%) This study shows that Tinem is useful antibiotic in eradicating the S. aureus from wound infection and urine infection.

REFERENCES

- Martins A, Cunha Mde L. Methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci: epidemiological and molecular aspects. Microbiol Immunol. 2007; 51: 787-95.
- Engemann JJ, Carmeli Y, Cosgrove SE. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 2003; 36: 592-8.
- Sakai H, Procop GW, Kobayashi N, Togawa D, Wilson DA, Borden L, et al. Simultaneous detection of Staphylococcus aureus and coagulase-negative staphylococci in positive blood cultures by real-time PCR with two fluorescence resonance energy transfer probe sets. J Clin Microbiol 2004; 42: 5739-44.
- Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired meticillin-resistant

- Staphylococcus aureus: an emerging threat. Lancet Infect Dis 2005; 5: 275-86.
- Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007; 298: 1763-71.
- Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect 2002; 4: 480-89.
- Heikens E, Fleer A, Paauw A, Florijn A, Fluit AC. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 2005; 43: 2286-90.
- 8. Wilson AP, Hayman S, Folan P, Ostro PT, Birkett A, Batson S, et al. Computer keyboards and the spread of MRSA. J Hosp Infect. 2006; 62:390-2.
- Piette A, Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet Microbiol 2008; 134: 45-54.
- Prates KA, Torres AM, Garcia LB, Ogatta SF, Cardoso CL, Tognim MC. Nasal carriage of methicillin-resistant Staphylococcus aureus in university students. Braz J Infect Dis 2010; 14(3): 316-8.
- Snyder GM, Thom KA, Furuno JP, Perencevich EN, Roghmann MC, Strauss SM, Netzer G, Harris AD.

- Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol 2008; 29: 583-9.
- Ikeagwu IJ, Amadi ES, Iroha IR. Antibiotic sensitivity pattern of Staphylococcus aureus in Abakaliki, Nigeria. Pak J Med Sci 2010: 24(2); 231-5.
- 13. Hamdan HZ, Ziad AH, Ali SK, Adam I. Epidemiology of urinary tract infections and antibiotics sensitivity among pregnant women at Khartoum North Hospital. Ann Clin Microbiol Antimicrob 2011; 10(1): 2-13.
- 14. Taj Y, Abdullah FE, Kazmi SU. Current pattern of antibiotic resistance in Staphylococcus aureus clinical isolates and the emergence of vancomycin resistance. J Coll Physicians Surg Pak 2010; 20(11): 728-32.
- 15. Onwubiko NE, Sadiq MN. Antibiotic sensitivity pattern of Staphylococcus aureus from clinical isolates in a tertiary health institution in Kano, Northwestern Nigeria. Pan Afr Med J 2011; 8: 4-12.
- Dada-Adegbola HO, Muili KA. Antibiotic susceptibility pattern of urinary tract pathogens in Ibadan, Nigeria. Afr J Med Med Sci 2010; 39(3): 173-9.